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Abstract. Through the use of coherent states describing the action-angle variables 
we establish a strict parallelism between Berry’s phase and Hannay’s angle. In par- 
ticular we define a geometrical transport for classical tori which leads to Hannay’s 
angle. As in the case of Berry’s phase, the transport can be associated with the 
minimization of a distance. 

1. Introduction 

Historically, Berry’s phase and Hannay’s angle have been introduced in the context of 
an adiabatic evolution governed by a Hamiltonian H ( X )  whose parameters X vary 
slowly in time. Let us briefly draw a parallel between them in the simple case of one 
degree of freedom. 

In the quantum case, {In, X)} denotes a continuous (with respect t o  X) family of 
normalized energy eigenstates In, X )  of the Hamiltonian H ( X ) ,  with corresponding 
eigenvalues E , ( X ) ;  the choice of a definit,e vector liz,X) amounts to the choice of 
an origin of phase for the vectors which belong to the ray I n , X ) .  I t  has been shown 
[I] t ha t  the  evolved state associated with an initial eigenstate of the Hamiltonian 
H ( X ( 0 ) )  at time zero is an eigenstate of the Hamiltonian H ( X ( t ) )  at time t whose 
phase 

t 
cP,(t) = @,(O) - ti-’ E,(S(s))ds + y:(t) 

J o  

(measured with respect to In, X ( t ) ) )  contains two contributions: a dynamical one 
which is expected and a geometrical one, Berry’s phase y: ( t ) )  which depends only on 
the curve r which has been followed i n  the space of parameters between 0 and t .  As 
explained by Simon [ a ] ,  the geometrical transport which, along I‘, brings an initial 
eigenstate In, X ( 0 ) )  to the state e x p ( i ~ ~ ( f ) ) l 7 ~ , X ( ~ ) ) ,  can be independently derived 
from the  existence of a ‘natural’ connection on the line bundle defined over the set of 

In the classical case, (C(1, X)} denotes a continuous family of closed trajectories 
C ( 1 , X )  in the phase space associated with the classical Hamiltonians H ( X ) ,  and 

rays {I%X)}. 

t On leave from the Institut d’Optique et hfCcanique de PrCcision, Universitk de Setif, Setif 19000, 
Algeria. 
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w ( I , X )  is the angular velocity on C ( I , X ) ;  each curve is equipped with a definite 
origin for the angle variable B conjugated to the action variable I .  It  has been shown 
[3] tha t ,  during the adiabatic evolution, a point in phase space follows trajectories of 
constant action, and tha t  its angular coordinate a t  time t 

B ( t )  = B(0)  + w ( I ,  X(s ) )ds  + BF(t)  (2) 

measured on the curve C ( Z , X ( t ) ) ,  also contains a dynamical contribution and a geo- 
metrical one, Hannay’s angle Oy(t).  Anandan [4] has interpreted the latter as defining 
a transport of classical tori in phase space: along r ,  the transported trajectory of 
C ( I , X ( O ) )  is deduced from C ( I , X ( t ) )  by an angular shift By( t )  of the points of 
this trajectory. Recently it has been shown that this transport on the phase space 
bundle over the parameter space is uniquely defined provided the connection flow is 
Hamiltonian [ 5 ] .  

The relation between Berry’s phase and Hannay’s angle has been studied from 
the point of view of semi-classical approximations. By identifying the phase of the 
quantum wavefunction (qln, X) with the generating functional of the classical canon- 
ical transformation q1 p + I ,  B (according to the method of Maslov), Berry [6] has 
established the relation 

The  same approximation has been used to argue tha t  the classical counterpart of the 
quantum geometrical transport is ‘the parallel transport of the total surplus area in 
phase space swept by the system’ [7]. An interesting feature of this approach is tha t  it 
allows A asymptotics for By( t ) .  However, the classical limit does not lead directly to 
Hannay’s angle and its associated transport equation, but to classical quantities which 
must then be differentiated with respect to the action I .  This may lead to difficulties 
when deriving the classical transport equation. 

Our goal in this article is to introduce a formalism which allows a direct derivation 
of Hannay’s angle from Berry’s phase and which establishes a direct, link between 
the quantum and the classical transports. Loosely speaking, the philosophy of our 
approach is to consider classical mechanics as a coarse-grained version of quantum 
mechanics. The  mathematical tool which is well suited for this point of view is that  
of coherent states [8]. Indeed, one expects that  the classical adiabatic evolution and 
the classical transport in phase space are nothing but the quantum evolution and the 
quantum transport expressed a t  the level of these states in the classical limit. \Ire 
show that this can be established very simply if one chooses those coherent states 
which are well adapted to the action-angle variables. The interest in introducing such 
a. quantum version of classical mechanics is the possibility of transferring to  it the 
quantum geometrical structures . 

The  organization of the paper is as  follows. In section 2 ,  we define the coherent 
states (crlX) associated with an (integrable) Hamiltonian H(X), and show that the 
complex number cr effectively describes the action-angle variables. In section 3,  using 
the states la, X), we give a very simple demonstration of (3) starting from the quantum 
evolution (1) and we show that (3) can be obtained independently from a variational 
principle. In section 4 ,  we relate the transport of classical trajectories to the quantum 
transport of coherent states. This transport, can be derived either from a geometrical 
version of the previously quoted variational principle or from the minimization of a 
distance. 
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2. Coherent states and action-angle variables 

Let W(X) be a (one degree of freedom) quantum Hamiltonian which depends on 
parameters X. We suppose tha t ,  in the range of variation of these parameters which 
we consider in the following, the spectrum of W(X) is discrete and non-degenerate. 
We denote its eigenvectors by In ,X) ,  the corresponding eigenvalues by E , ( X )  and 
N ( X )  the excitation number operator is defined by: 

In order to give a quantummechanical derivation of Hannay's angle, we look 
for quantum operators which are susceptible to describe the classical action I and 
angle 0 variables. Since in the classical limit the action I is related to the excitation 
number n by I = nh,  it  is natural to associate with it the  quantum operator I ( X )  = 
h N ( X ) .  The  search for a quantum description of 0 (which is canonically conjugate 
to I : { e ,  I}pB = 1) is much harder. One can neither find a corresponding Hermitian 
operator O(X) such tha t  [ O ( X ) , N ( X ) ]  = i nor even a unitary operator U ( X )  
(in place of exp(-iO(X))) such that [ U ( X ) , N ( X ) ]  = U ( X ) .  This difficulty, also 
encountered in the general problem of defining a phase operator in quantum physics, is 
connected with the fact that  the spectrum of N ( X )  is bounded from below. However, 
as in the  case of the harmonic oscillator, an approximate solution can be found, which 
becomes exact in the classical limit. Let U(X) be the isometric operator defined by 
[91: 

U ( X ) l n , X )  = 171- 1,X) ( n  3 1) 

U(X)lO, X) = 0. (5)  

It satisfies the relations: 

In the classical limit ( h  ---$ 0,n + m , n h  = Ifinite) one can forget the second equality 
in (5) and consider U ( X )  to be unitary. Moreover, since the distance between consec- 
utive energy levels is of the order of ti, in this limit, the second equality in (6) reads 
' [ U ( X ) , H ( X ) ]  = hw(I,  X)U(X)' where w ( 1 , X )  = ( a / a I ) E , ( X ) ;  therefore it is the 
quantum analogue of the classical equation e = (0 ,  H}pB = w for the angle variable 
B.  In conclusion, h N ( X )  and U(X) are the quantum operators which are naturally 
related to the classical variables Z and exp(-iO). 

Coherent states are also well known to be appropriate for the classical limit. They 
are usually defined for the harmonic oscillator, due to the particular role played in 
physics by the position and momentum variables q and p .  However for any Hamilto- 
nian H(X), one can as well define associated coherent states by: 
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where a is an  arbitrary complex numbert. As is nothing but the mean value of the 
operator N ( X )  in these states, the classical limit now corresponds to h goes to zero, 
la1 goes to infinity, the product laI2h = Z remaining finite. According t,o the Stirling 
approximation the  sum over n in (7)  is highly peaked around the value N = / @ I 2 .  
The value An = 1 0 1  of the dispersion in n shows that a coherent state still 'covers', 
in the classical limit, an infinite number of eigenvectors, but that  it corresponds to an 
infinitesimal fluctuation AI = [FLI] ' /~  of the action. With the help of t.his remark, one 
easily verifies tha t  exp(i a rg(a) )  is nothing but the mean value of the operator U ( X )  
in the coherent state Icr, X). Therefore, in the classical limit, the complex parameter 
a of this coherent state is related to the action-angle variables of the Hamikonian by 

a = &exp(-io). (8) 

(In the next section, we give a supplementary justification of (8) based on the study 
of the evolution in time of the coherent states.) It will be import,ant# for the following 
sections to remember, tha t ,  in the classical limit, a coherent state Icy,X) (or better 
a ray I a , X ) )  is in correspondence with a point in phase space. The  set of rays 
{ I a e x p i p , X ) }  ( a  fixed, 0 < p < 2 ~ )  is associated with a curve C(Z,X) of constant 
action, and the particular ray Ilcyl,X) corresponds to the origin for the angle variable 
on this curve. This correspondence of course depends on the choice of the family 
{ l n , X ) } .  (This point is discussed in appendix 1.) 

Finally let us remark that the above analysis can be trivially generalized to any 
integrable Hamiltonian in the same way as one extends the description of the one- 
dimensional harmonic oscillator to the case of p degrees of freedom (or to an infinite 
number in field theory [lo]). The  coherent states l a , X ) ( a  = ( a 1 ,  . . . , oP) E C P )  are 
approximate eigenvectors of the operators h N i ( X )  and U i ( X )  (i = 1 , .  . . , p )  which 
describe the classical observables Zi and exp(-iQi), (ei, Ii) being the i th pair of action- 
angle variables. 

3. Hannay's angle and coherent states 

In this section, we give two derivations of the relation (3 )  between Berry's phase 
and Hannay's angle, using the coherent states Icy,X). Whereas i n  the first one, the 
adiabatic evolution of the states In,X(O)) is taken for granted, i n  the second one, 
the adiabatic evolution of the coherent states [cy,X(O)) is directly obtained from a 
variational principle. 

Starting with the result of [l] describing the adiabatic evolution of the energy 
eigenstate In, X ( 0 ) ) :  

u(t)blx(o)) = exp(i@,(t))ln, X ( t ) )  (9) 
(@.,(t) being given by relation (1) with @ , l ( 0 )  = 0) ,  one deduces that a colierent state 
(cy ,  X ( 0 ) )  evolves according to: 

t In ( 7 )  we have explicitly supposed that the number of eigenstates is strictly infinite. If this is not 
the case for a given value of h ,  one knows that this number goes to  infinity when h goes to zero. So, 
in any case, formula ( 7 )  is meaningful in the classical limit. We acknowldge one of the referees for 
bringing our attention to this point. 
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As already mentioned, in the classical limit, the sum over n is highly peaked around 
the value N = [&I2.  This allows @),( t )  to be replaced in this region by its first order 
approximation: 

(11) 
a 
aN ‘P,(t) = @,(t) + ( n  - N)-@,(t) 

and (10) becomes: 

u ( t ) l a , x ( o ) )  = exp [i (@,(t) - (12) 

Therefore, up to a global phase factor, the evolved state of a coherent state associated 
with the initial Hamiltonian W ( X ( 0 ) )  is a coherent state Ia(t), X ( t ) )  associated with 
the Hamiltonian H ( X ( t ) )  a t  time t .  Setting cr(t) = /cr(t)l exp -iO(t), one verifies that  
the modulus la(t)l does not depend on time and one recovers the adiabatic invariance 
of the action I .  As for the angular variable 8 ( t )  = O(0) - ( a / a N ) Q N ( t ) ,  it  evolves i n  
time according to the relation 

(13)  
a a 

= h - l - E , ( x ( t ) )  d N  - 

If the Hamiltonian does not depend on time, (13) reduces to the classical Hamiltonian 
equation = w ( I , X ) ;  this is an  additional justification,of the relation (8) of the 
previous section. In the  general case, the angular velocity 0 appears as the sum of the 
‘dynamical’ part w ( 1 ,  X )  and of an  additional angular ve1ocit.y 

which we may call Hannay’s angular velocity. When integrated over time, relation 
(14) leads to (3). This derivation of the relation between Berry’s phase and Hannay’s 
angle, which can be trivially extended to  any integrable system through the use of the 
multidimensional coherent states j a , X ) ,  is up to our knowledge the simplest which 
has been given. 

I t  is also interesting to give an autonomous derivation of (13), which does not 
presuppose the evolution of the energy eigenstates. The idea is to use the variational 
principle 

with a judicious selection of the test vectors I Q ( t ) )  [ l l ] .  As is well known, this prin- 
ciple leads to Schrodinger’s equation if there is no restriction on IS ( t ) ) .  However, if 
one pictures classical mechanics as some blurred version of quantum mechanics, it is 
natural to restrict the choice of 1Q(t ) )  to ‘classical states’. The  coherent states are 
good candidates since they are in correspondence with the points of the classical phase 
space. We choose the coherent states la(t) ,  X ( t ) )  because we want to parametrize the 
points in phase space, a t  time t ,  by the action and angle variables corresponding to  
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the Hamiltonian H ( X ( t ) )  a t  that  time. The variation is with respect to  the complex 
function a@). A straightforward calculation shows that the bracket in (15) reads: 

When the parameters X are independent of time the functional derivative of the 
right-hand side of (16) with respect to 5 is 

ihiv + aexp(-la12) C(n!) - ’ (a lZn(~ ,  - E,,,) 

and the variational principle, in the classical limit, leads to: 

n 

(17) &(t )  = -ih- I d  Z E ~ ( X ) ~ ( ~ )  (1aI2 = N ) .  

I t  implies that  the action I = hla12 is invariant and that the angular velocity is 
nothing but the classical one w ( I , X ) .  When the parameters depend on time, but 
much more slowly than the angle 6 ( t )  (adiabatic hypothesis), one can neglect in (16) 
the terms m # n which appear in the double sum over m and n (this is analogous to 
the random phase approximation). If one introduces the explicit expression of Berry’s 
frequency [ 11 : 

i,,B(t) = i ( n ,  X ( t )  1; 1 n,  X ( t ) )  (18) 

this sum then reads hexp -la12 C,(n!)-’Ia12”i,~. So, taking into account the adia- 
batic evolution of the parameters amounts to  replace E, by E, - hi,:. Formula (17) 
becomes 

(19) 
d 

d N  
b( t )  = -ih-’ - ( E ~ ( x ( ~ ) )  - hi,E(t))a(t) .  

One recoyers the property that the action I = hlaI2 is invariant and the angular 
velocity 0 the sum of a dynamical part w ( I , X )  and of Hannay’s angular velocity (14) .  

4. Hannay’s angle and geometrical transport 

In the previous section Berry’s phase and Hannay’s angle have been considered in  the 
dynamical context of adiabatic evolution. However there also exists a pure geometrical 
approach which was first given for Berry’s phase [2]. We recall shortly how this phase 
is associated with the transport of the eigenstates In, X) because this will be useful to 
understand how Hannay’s angle is associated with the transport of classical trajectories 
in our coherent state formalism. 

In a Hilbert space, equipped with the usual distance deduced from t.he Hermitian 
product, let us  consider two infinitesimally close normalized vect,ors IS,) and IQ, + 
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dS, ) ,  chosen as reference states on the two corresponding rays IS,) and \So + dSo).  
There is a natural  way to associate with any given vector I@) = IS,) exp(iqo) of the 
ray ISo) one vector IS + d S )  = IS, + dS,) exp[i(po + dp,)] of the ray ISo + dSo). By 
definition it is the one among all vectors [So + dS,) exp i(p, + d p )  which is closest to 
IS,) exp ip,. This vector is obtained by minimizing the quadratic quantity IlldS,) + 
i1S,)dp1(2 with respect to d q .  The  result: 

- 

- 

dP, = i P 0  I d*,) (20) 

which can be equivalently written 

defines the transport of the vector IS) onto - the vector 18 + d S )  and more generally 
the transport of any vector of the ray IS,) onto the corresponding vector of the 
ray IS, + dS, ) .  T h e  transport equation (21) may also be deduced from the notion 
of distance between infinitesimally close rays, a method tha t  we shall use further. 
Indeed, let us define the squared distance d [12]: 

d2(14,)’ IQ, + dQ0)) = (d@ld@) - l(@ld@)12 (22) 
- 

where I@) and l@+d@) are any infinitesimally close vectors belonging to the rays IS,) 
and IS, + dS,).  (One can verify tha t  the right-hand side of (22) is independent of the 
choice of the  pair I @ ) ,  l@+d@)), I t  is then obvious that (d@ I d@) is at a minimum when 
the transport equation (‘P I d@) = 0 is satisfied. If instead of two close vectors IS,) 
and l S o + d S o )  one now considers a family { l S o ( X ) ) }  of quantum states which depend 
smoothly on X and are chosen as reference states for the family { l S o ( X ) ) }  of rays, the 
relation (20) allows the definition of the transport of a vector of the ray ( S , ( X ( O ) ) )  
along a curve X ( t ) .  The transported vector lS (X(2 ) )  = IS , (X( t ) )  exp(ipo(t))  of the 
initial vector ( S o ( X ( 0 ) ) )  exp(icpo(0)) has a phase cpo(t) which satisfies the differential 
equation: 

The  right-hand side of (23) is nothing other than Berry’s frequency (18) when one 
takes for / S o ( X ) )  the energy eigenvectors In, X ) .  (The same result could as well be 
obtained from the relation ( S ( X ( t ) ) l ( a / a t ) l S ( X ( t ) ) )  = 0.) 

We now come to the geometrical transport of classical tori. We characterize each 
trajectory in the phase space by three data:  the parameters X ,  the action I and 
an  origin on the curve for the angular variable. At this stage of the discussion, it 
is important to recall t ha t  once the eigenstates Jn ,X} are chosen, each coherent ray 
l a , X )  corresponds to one definite point in phase space. We call C ( Q , I , X )  that  
trajectory which is deduced from the reference trajectory C ( I ,  X )  by an angular shift 
8. (Trajectories with the same value of X and I differ from each other by the value of 
0 in the same way as vectors of the ray In, X )  differ from each other by a global phase 
factor.) The  transport of a classical trajectory can be determined by the transport of 
any one of i ts  points. Let I and 80 be the action-angle variables of such a point and 
I + d I ,  8o+dO those o f the  transported point, ( 6 0  and 6,+d6 are measured respectively 
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on the  reference curves C ( I , X )  and C ( I  + d Z , X  + d X ) ) .  The  condition for this 
transport of points to define a transport of trajectories is tha t  d I  and d9 do  not depend 
on Bo. The  corresponding infinitesimal transport at the level of the coherent rays is 
such tha t  the ray la,X)(lila12 = I ;  arg(cu) = -eo) becomes la + d a , X  + d X ) ( h l a  + 
daI2  = I + d I ,  arg(cu + d a )  = -(eo + de)). In order to define the transport of a 
trajectory C(B, , I ,X) ,  which corresponds to the set of rays {Iaexp( i 'p ) ,X)}  ('p E 
[0,27r]), onto the trajectory C(0, + de, I + d I ,  X + d X ) ,  which corresponds to the 
set {I(. + dcu) exp(i'p), X + d X ) } ,  we introduce a distance between these two sets of 
rays. The  square distance d12 between them is the average over the trajectory (i.e. 
over 'p) of the square distances between a ray in the first set and its transported one 
in the second set: 

d12 = & 1'" d2( (ae i+ ' ,X) ,  I(a + d a ) e i 9 , X  + dX))d 'p .  (24) 

The  transport equation is obtained by the minimization of d12 with respect to d I  and 
de. 

The  distance d12 is a quadratic function of dial, d6 and d X .  If d X  = 0,  t8he 
distance between two coherent rays la, X )  and la + dcu, X) is the same as tha t  between 
the usual coherent rays I..) and la + da) of the harmonic oscillator, since one can 
deduce the former from the latter by a unitary transformation (the one which brings 
the eigenvectors In) of the harmonic oscillator onto those of W ( X ) ,  I n , X ) ) .  This 
distance is simply: (dla1)2 + Ja12d02 [12]. More generally, when d X  is different from 
zero, the distance d12 reads (cf appendix 2) 

d12 = (dla1)2 + laI2dO2 - 2A.  d X  dial - 2 B  * d X  dB + CijdX; d X j  (25) 

where 

A = O  

(with = N) .  

The  result of the minimization is then 

Therefore, when the transport is realized along a curve r in the space of parameters, 
one recovers the expected relations: 

i = 0 O(t)  = @ ( t ) .  (28) 

This clearly shows that the transport of classical trajectories can be derived from the 
minimization of a distance and is entirely described by Hannay's angle (the action Z 
being invariant in the transport) in exactly the same way as the transport of energy 
eigenvectors is entirely described by Berry's phase (the excitation number R being 
kept fixed). 

Let us finally show that the relation (9, d 9 )  = 0 which also defines the quantum 
transport ,  has, as well, a n  analogue at the level of coherent states. The  easiest way to 
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find it is to come back to the variational principle (15) and to e1iminat.e any reference 
to dynamics; i.e. we set H = 0 in i t .  Then providing one may ignore in (16) the terms 
m # n,  the calculation which lead to  (19), trivially gives the transport relation (28). 
In section 3,  this omission was justified by the adiabatic hypothesis. In order to make 
i t  rigorous, it  suffices now to replace the variational principle (15) by its averaged 
version: 

6 [I  (cx(t)eiv,X(t)  l i t /  a ( t ) G v , X ( t )  > I  d p  = 0. 

This replacement is justified since we now want to transport a trajectory, i.e. a whole 
set of coherent rays {Iaexp( ip) ,X( t ) )} ,  (p E [ 0 , 2 ~ ] ) .  One can easily verify tha t ,  
effectively, the variational principle (29) does not depend on the representation which 
one chooses for these rays. Let us remark tha t  if instead of a variational principle one 
imposes tha t  the integrant (*Id*) in (29) is zero one obtains the relation IcxI2s = ?,” 
describing a ‘surplus area’ [7]. Although this relation leads to (28) when differentiated 
with respect to I ,  it  is in fact incompatible with it except when ?,” is proportionnal 
t o  n .  The  necessity of defining the classical transport by (29) and not by applying 
(9, dlk) = 0 to the classical coherent states is quite understandable if one notes that 
the latter depends on the representations which are chosen on the coherent rays. 

5 .  Conclusion 

In this paper, we have developed a framework which allows a parallel description of 
Berry’s phase and Hannay’s angle. Thanks to the coherent state formalism, we have 
been able to transpose at the quantum level the problem of the geometrical transport 
of classical tori. One remarkable fact is tha t  this transport can be obtained from the 
minimization of a distance. It would be interesting to  define such a distance in the 
phase space from purely classical arguments. In particular, one may expect that  its 
minimization leads to the connection which has been defined by Montgomery [ 5 ] .  

Appendix 1 

In this appendix, we study the consequences of the choice of the family / n , X )  of 
eigenvectors of the Hamiltonians H ( X )  on the correspondence between the coherent 
rays Ia ,X)  and the points i n  phase space. Let us consider the gauge transformation 

In, X ) ’  = ex!4iion(X))ln, X )  ( A l . 1 )  

defining the new family {In, X)’}, and let Icy, X)’ be the new coherent states 

n=O 

(A1.2)  

In the classical limit, the sum in (A1.2) is obtained from a first order expansion of 
cp,(X) around the value N = laI2 in the same way as formula (10) was calculated i n  
section 3.  One gets the relation between coherent rays (analogous to (12)) :  

la, X ) ’  = la exp i(6’/6’N)pN(X), X ) .  (A1.3) 
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Therefore the ray Icr,X)’ corresponds to a point in phase space which still lies on 
the curve C(I,X) but whose angular coordinate has been shifted by e(Z,X) = 
-(8/r3N)cpN(X). In other words the change { I n , X ) }  + {I.,X)’} of the family 
of eigenstates corresponds to a change C ( I ,  X )  + C(0, I ,  X )  (i.e. a ‘rotation’ with 
respect to  the angle variable) of the reference trajectories. Of course, although Han- 
nay’s angle, defined by (2), depends on this choice, neither its value for a closed curve 
r in the space of parameters, nor the geometrical transport of trajectories depend on 
it. 

Appendix 2 

We calculate those terms in the distance (25) which allow us to obtain the classical 
transport (28). Let 10) = Icr,X)(a = IcrJexp-io) and I@+d@) = I(cr+da)exp -i(e+ 
de)) be two close coherent states. Then d12 reads: 

dlz = (d@ld@) - J(@ld@)12 (A2.1)  

where the bar means an average of the metric elements over the argument of the 
complex number a. From expression (7)  of I@), one easily deduces 

8 
d X  

d@ = exp(-lcul2/2) 5 [ (i - 
dial + ind0 + d X  - -1 I n , X )  (A2.2)  

n 

and 

The term 2A-dXdlcr l  in (25) originates from (d@ld@). Taking the average into 
account, one sees that  this term is the sum over n of quantities proportional to: 
( ( n ,  X l ( d / d X ) ( n ,  X) + CC). Since the vectors are normalized, all these sums are zero. 
Therefore 

A = 0. (A2.4)  

The term 2 B . d X d e  in (25) originates from (d@[dQi) and I(@(d@)12. Their sum is 

(A2.5)  

Since, in the classical limit, the sum in (A2.5)  is peaked around the value N = 
one gets: 

(A2.6)  
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